A shuffling theorem for reflectively symmetric tilings

نویسندگان

چکیده

The author and Rohatgi recently proved a ‘shuffling theorem’ for doubly-dented hexagons. In particular, they showed that shuffling removed unit triangles along horizontal axis in hexagon changes the tiling number by only simple multiplicative factor. this paper, we consider similar phenomenon symmetry class of tilings, namely, reflectively symmetric tilings. We also prove several theorems halved

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Shuffling Algorithm for Domino Tilings∗

We study the dynamics of a certain discrete model of interacting interlaced particles that comes from the so called shuffling algorithm for sampling a random tiling of an Aztec diamond. It turns out that the transition probabilities have a particularly convenient determinantal form. An analogous formula in a continuous setting has recently been obtained by Jon Warren studying certain model of i...

متن کامل

A Reciprocity Theorem for Domino Tilings

(Dated: April 30, 2001) Let T (m;n) denote the number of ways to tile an m-by-n rectangle with dominos. For any fixed m, the numbers T (m;n) satisfy a linear recurrence relation, and so may be extrapolated to negative values of n; these extrapolated values satisfy the relation T (m; 2 n) = εm;nT (m;n), where εm;n = 1 if m 2 (mod 4) and n is odd and where εm;n = +1 otherwise. This is equivalent ...

متن کامل

A Four-Color Theorem for Periodic Tilings

There exist exactly 4044 topological types of 4-colorable tile-4-transitive tilings of the plane. These can be obtained by systematic application of two geometric algorithms, edge-contraction and vertex-truncation, to all tile-3-transitive tilings of the plane.

متن کامل

Carries, shuffling, and symmetric functions

Article history: Received 1 February 2009 Accepted 11 February 2009 Available online 15 April 2009 MSC: 60C05 60J10 05E05

متن کامل

A Bijective Proof of Stanley's Shuffling Theorem

For two permutations o and u on disjoint sets of integers, consider forming a permutation on the combined sets by "shuffling" o and u (i.e., a and co appear as subsequences). Stanley [10], by considering P-partitions and a g-analogue of Saalschutz's 3F2 summation, obtained the generating function for shuffles of o and u with a given number of falls (an element larger than its successor) with re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2021

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2021.112390